Composição de objetos de aprendizagem multimídia através de sumarizadores automáticos de texto baseados em modelos deep learning

dc.contributor.advisor1SOARES NETO, Carlos de Salles
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1556965324419871por
dc.contributor.referee1SOARES NETO, Carlos de Salles
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1556965324419871por
dc.contributor.referee2OLIVEIRA, Alexandre César Muniz de
dc.contributor.referee2Latteshttp://lattes.cnpq.br/5225588855422632por
dc.contributor.referee3CARVALHO, Windson Viana de
dc.contributor.referee3Latteshttp://lattes.cnpq.br/1744732999336375por
dc.creatorOLIVEIRA, Leandro Massetti Ribeiro
dc.creator.Latteshttp://lattes.cnpq.br/6752362728498223por
dc.date.accessioned2022-11-29T16:53:08Z
dc.date.issued2022-09-16
dc.description.abstractA Learning Object (LO) is a digital resource that can be used and reused or referenced during a process of technological support for teaching and learning. Despite being mostly multimedia, with audio, video, text and images synchronized with each other, some digital education resources have texts as one of their main elements in the teaching process, such as websites, texts, video classes, seminars, and the summarization of these texts can be a way of composing multimedia LOs. However, text summarization is a costly process in time and effort, creating the need to seek new ways to generate this content. The present work show a solution for the composition of multimedia LOs through automatic text summarizers based on Deep Learning Transformers models from two experiments: The first one composing LOs from educational texts in Portuguese using translators and text summarizers, in this experiment the results presented were positive and allow comparing the performance of summaries as generators of LO in text format; The second experiment presents an educational video summarization solution using the same Deep Learning models for subtitle summarization, the tests were performed using the EDUVSUM dataset in which it was possible to improve the results of the original article reaching 26.53% accuracy in a multi-class problem and average absolute error of 1.49 per video frame and 1.45 per video segment.eng
dc.description.resumoUm Objeto de Aprendizagem (OA) é um recurso digital, que pode ser utilizado e reutilizado ou referenciado durante um processo de suporte tecnológico ao ensino e aprendizagem. Apesar de serem principalmente multimídia, com áudio, vídeo, texto e imagens sincronizados entre si, alguns recursos digitais de educação possuem textos como um de seus elementos principais no processo de ensino, como sites, textos, vídeo aulas, seminários, e a sumarização desses textos podem ser uma forma de composição de OAs multimídia. No entanto, a sumarização de textos é um processo oneroso em tempo e esforço, gerando a necessidade de buscar novas formas de gerar esse conteúdo. Este trabalho apresenta uma solução para a composição de OAs multimídia através de sumarizadores automáticos de texto baseados em modelos Deep Learning Transformers a partir de dois experimentos: O primeiro fazendo a composição de OAs a partir de textos educacionais na língua portuguesa utilizando tradutores e sumarizadores de texto, neste experimento os resultados apresentados foram positivos e permitem comparar o desempenho dos resumos como geradores de OA em formato de texto; O segundo experimento apresenta uma solução de sumarização de vídeos educacionais utilizando os mesmos modelos de Deep Learning para a sumarização da legenda, os testes foram realizados utilizando o dataset EDUVSUM no qual foi possível melhorar os resultados do artigo original alcançando 26,53% de acurácia em um problema multi-classe e erro absoluto médio de 1,49 por frame do vídeo e 1,45 por segmento de vídeo.por
dc.description.sponsorshipFAPEMApor
dc.formatapplication/pdf*
dc.identifier.citationOLIVEIRA, Leandro Massetti Ribeiro. Composição de objetos de aprendizagem multimídia através de sumarizadores automáticos de texto baseados em modelos deep learning. 2022. 51 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís, 2022.por
dc.identifier.urihttps://tedebc.ufma.br/jspui/handle/tede/tede/4352
dc.languageporpor
dc.publisherUniversidade Federal do Maranhãopor
dc.publisher.countryBrasilpor
dc.publisher.departmentDEPARTAMENTO DE INFORMÁTICA/CCETpor
dc.publisher.initialsUFMApor
dc.publisher.programPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCETpor
dc.rightsAcesso Abertopor
dc.subjectsumarização de textos;por
dc.subjectobjeto de aprendizagem;por
dc.subjectdeep learning;por
dc.subjecttransformers;por
dc.subjecttext summarization,eng
dc.subjectlearning object,eng
dc.subjectdeep learning,eng
dc.subjecttransformers.eng
dc.subject.cnpqCiência da Computaçãopor
dc.titleComposição de objetos de aprendizagem multimídia através de sumarizadores automáticos de texto baseados em modelos deep learningpor
dc.title.alternativeComposition of multimedia learning objects through automatic text summarizers based on deep learning modelseng
dc.typeDissertaçãopor

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
Leandro_Massetti.pdf
Tamanho:
1.32 MB
Formato:
Adobe Portable Document Format
Descrição:
Dissertação de Mestrado

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
2.2 KB
Formato:
Item-specific license agreed upon to submission
Descrição: