Composição de objetos de aprendizagem multimídia através de sumarizadores automáticos de texto baseados em modelos deep learning
Nenhuma Miniatura disponível
Arquivos
Data
2022-09-16
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal do Maranhão
Resumo
A Learning Object (LO) is a digital resource that can be used and reused or referenced
during a process of technological support for teaching and learning. Despite being mostly
multimedia, with audio, video, text and images synchronized with each other, some digital
education resources have texts as one of their main elements in the teaching process, such
as websites, texts, video classes, seminars, and the summarization of these texts can be a
way of composing multimedia LOs. However, text summarization is a costly process in
time and effort, creating the need to seek new ways to generate this content. The present
work show a solution for the composition of multimedia LOs through automatic text
summarizers based on Deep Learning Transformers models from two experiments: The
first one composing LOs from educational texts in Portuguese using translators and text
summarizers, in this experiment the results presented were positive and allow comparing
the performance of summaries as generators of LO in text format; The second experiment
presents an educational video summarization solution using the same Deep Learning
models for subtitle summarization, the tests were performed using the EDUVSUM dataset
in which it was possible to improve the results of the original article reaching 26.53%
accuracy in a multi-class problem and average absolute error of 1.49 per video frame and
1.45 per video segment.
Descrição
Palavras-chave
sumarização de textos;, objeto de aprendizagem;, deep learning;, transformers;, text summarization,, learning object,, deep learning,, transformers.
Citação
OLIVEIRA, Leandro Massetti Ribeiro. Composição de objetos de aprendizagem multimídia através de sumarizadores automáticos de texto baseados em modelos deep learning. 2022. 51 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís, 2022.