Método de diagnóstico da síndrome da apneia obstrutiva do sono por aprendizado de máquina
Nenhuma Miniatura disponível
Data
2022-03-22
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal do Maranhão
Resumo
Obstructive sleep apnea syndrome (OSAS) is characterized by fragmentation and repetitive
hypoxia during sleep, if this syndrome is not properly diagnosed and treated, it becomes the
cause of serious complications such as cardiovascular problems. The diagnosis of this
syndrome requires a detailed clinical examination called polysomnography, which consists
of several tests that perform an analysis of brain (EEG), heart (ECG), muscle (EMG) and
eye (EOG) activity. Due to the complexity of performing polysomnography, the present
study aims to classify and diagnose two groups of subjects, healthy and with normal apnea,
based on the use of ECG signals applied in a supervised machine learning algorithm along
with Principal Component Analysis (PCA). Using the feature extraction methodology
adapted for the diagnosis of obstructive sleep apnea, the results were sampled in two and
three dimensions with 95% accuracy.
Descrição
Palavras-chave
apneia;, eletrocardiograma;, polissonografia;, diagnóstico., apnea;, electrocardiogram;, polysomnography;, diagnosis.
Citação
SOARES, Brenda Irla Cardoso Feitosa. Método de diagnóstico da síndrome da apneia obstrutiva do sono por aprendizado de máquina. 2022. 78 f. Dissertação (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís, 2022.