Logo do repositório
Comunidades e Coleções
Tudo no DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "OLIVEIRA, Leandro Massetti Ribeiro"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Nenhuma Miniatura disponível
    Item
    Composição de objetos de aprendizagem multimídia através de sumarizadores automáticos de texto baseados em modelos deep learning
    (Universidade Federal do Maranhão, 2022-09-16) OLIVEIRA, Leandro Massetti Ribeiro; SOARES NETO, Carlos de Salles; http://lattes.cnpq.br/1556965324419871; SOARES NETO, Carlos de Salles; http://lattes.cnpq.br/1556965324419871; OLIVEIRA, Alexandre César Muniz de; http://lattes.cnpq.br/5225588855422632; CARVALHO, Windson Viana de; http://lattes.cnpq.br/1744732999336375
    A Learning Object (LO) is a digital resource that can be used and reused or referenced during a process of technological support for teaching and learning. Despite being mostly multimedia, with audio, video, text and images synchronized with each other, some digital education resources have texts as one of their main elements in the teaching process, such as websites, texts, video classes, seminars, and the summarization of these texts can be a way of composing multimedia LOs. However, text summarization is a costly process in time and effort, creating the need to seek new ways to generate this content. The present work show a solution for the composition of multimedia LOs through automatic text summarizers based on Deep Learning Transformers models from two experiments: The first one composing LOs from educational texts in Portuguese using translators and text summarizers, in this experiment the results presented were positive and allow comparing the performance of summaries as generators of LO in text format; The second experiment presents an educational video summarization solution using the same Deep Learning models for subtitle summarization, the tests were performed using the EDUVSUM dataset in which it was possible to improve the results of the original article reaching 26.53% accuracy in a multi-class problem and average absolute error of 1.49 per video frame and 1.45 per video segment.

DSpace software copyright © 2002-2025 LYRASIS

  • Política de Privacidade
  • Termos de Uso
  • Enviar uma Sugestão