EXTRAÇÃO CEGA DE SINAIS COM ESTRUTURAS TEMPORAIS UTILIZANDO ESPAÇOS DE HILBERT REPRODUZIDOS POR KERNEIS
Nenhuma Miniatura disponível
Arquivos
Data
2012-02-10
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal do Maranhão
Resumo
This work derives and evaluates a nonlinear method for Blind Source Extraction (BSE) in a
Reproducing Kernel Hilbert Space (RKHS) framework. For extracting the desired signal from
a mixture a priori information about the autocorrelation function of that signal translated in a
linear transformation of the Gram matrix of the nonlinearly transformed data to the Hilbert
space. Our method proved to be more robust than methods presented in the literature of BSE
with respect to ambiguities in the available a priori information of the signal to be extracted.
The approach here introduced can also be seen as a generalization of Kernel Principal
Component Analysis to analyze autocorrelation matrices at specific time lags. Henceforth, the
method here presented is a kernelization of Dependent Component Analysis, it will be called
Kernel Dependent Component Analysis (KDCA). Also in this dissertation it will be show a
Information-Theoretic Learning perspective of the analysis, this will study the transformations
in the extracted signals probability density functions while linear operations calculated in the
RKHS.
Descrição
Palavras-chave
Extração Cega de Fontes, Espaço de Hilbert Reproduzido por Kernel, Aprendizagem de Máquina utilizando Teoria da Informação, Blind Signal Extraction, Reproducing Kernel Hilbert Spaces, Information-Theoretic Learning
Citação
SANTANA JÚNIOR, Ewaldo éder Carvalho. BLIND SIGNAL EXTRACTION WITH TEMPORAL STRUCTURES USING HILBERT SPACE REPRODUCED BY KERNEL. 2012. 76 f. Dissertação (Mestrado em Engenharia) - Universidade Federal do Maranhão, São Luís, 2012.