Segmentação automática da próstata em imagens de ressonância magnética utilizando redes neurais convolucionais, mapa probabilístico e treinamento adversário
Nenhuma Miniatura disponível
Arquivos
Data
2019-02-15
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal do Maranhão
Resumo
Prostate cancer is the second most common cancer among men, being the second most
deadly. Early detection is a strategy to find the tumor at an early stage and thus provide
a better chance of treatment. Currently the prostate gland imaging test has grown for
prevention, diagnosis and treatment. The manual segmentation of the prostate is delayed
and the propensity to variability among those expected, due to work, alternatives such as
computational systems that use image processing and the identification of more advanced
and exploited patterns for the early diagnosis of this disease, providing a second opinion
for the specialist and increase the process. In this work, several automatic tasks are
provided for the segmentation of the prostate from magnetic resonance imaging using a
deep learning technique, probabilistic mapping and adversarial training of neural networks.
The proposed methodology was tested on two public imaging databases, the Prostate 3T
prostate and the PROMISE12, resulting in an average Dice of 89%.
Descrição
Palavras-chave
Imagens médicas, Aprendizagem profunda, Rede neural convolucional, Treinamento adversário, Medical images, Deep learning, Convolutional neural network, Adversarial training
Citação
FERREIRA, Jonnison Lima. Segmentação automática da próstata em imagens de ressonância magnética utilizando redes neurais convolucionais, mapa probabilístico e treinamento adversário. 2019. 67 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação / CCET) - Universidade Federal do Maranhão, São Luís.