Aprendizagem Profunda Aplicada ao Diagnóstico de Melanoma
Nenhuma Miniatura disponível
Arquivos
Data
2019-02-14
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal do Maranhão
Resumo
Melanoma is the most lethal type of cancer when compared to others skin diseases. However,
when the diagnosis is made in its initial stage, patients have high rates of recovery. Several
approaches to automatic detection and diagnosis of melanoma have been explored by
different authors in order to provide an auxiliary opinion to specialists. Training models
with the existing data sets have been a difficult task due to the problem of imbalanced
data. This work aims to evaluate to the evaluation the performance of machine learning
algorithms combined with imbalanced learning technique, regarding the task of melanoma
diagnosis. The architectures of Convolutional Neural Networks VGG16, VGG19, Inception,
and ResNet were used along with ABCD rule to extract patterns of skin lesions in a set of
200 dermatoscopic images. The Random Forest classifier reached a sensitivity of 92.5 %
and a kappa index of 77.15 % after the use of attribute selection with Greedy Stepwise
and balancing the training data with Synthetically Minority Oversampling TEchnique
(SMOTE) and the Edited Nearest Neighbor (ENN) rule.
Descrição
Palavras-chave
Diagnóstico de melanoma, Balanceamento de classes, Aprendizagem profunda, Redes neurais convolucionais, Random forest, SMOTE, ENN, Melanoma diagnosis, Imbalanced learning, Deep learning, Convolutional neural networks, Random forest, SMOTE, ENN
Citação
MAIA, Lucas Bezerra. Aprendizagem Profunda Aplicada ao Diagnóstico de Melanoma. 2019. 86 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação / CCET) - Universidade Federal do Maranhão, São Luís.