Logo do repositório
Comunidades e Coleções
Tudo no DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "REIS, Artur Bernardo Silva"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Nenhuma Miniatura disponível
    Item
    Metodologia computacional para a segmentação da próstata e classificação de lesões em imagens de ressonância magnética utilizando o modelo de Ising
    (Universidade Federal do Maranhão, 2019-03-11) REIS, Artur Bernardo Silva; PAIVA, Anselmo Cardoso de; 375523843-87; http://lattes.cnpq.br/6446831084215512; SILVA, Aristófanes Corrêa; 288745363-72; http://lattes.cnpq.br/2446301582459104; SILVA, Aristófanes Corrêa; 288745363-72; http://lattes.cnpq.br/2446301582459104; PAIVA, Anselmo Cardoso de; 375523843-87; http://lattes.cnpq.br/6446831084215512; CONCI, Aura; http://lattes.cnpq.br/5601388085745497; PACIORNIK, Sidnei; http://lattes.cnpq.br/4692086634018379; CARVALHO FILHO, Antonio Oseas de; http://lattes.cnpq.br/7913655222849728
    Prostate cancer is the second most prevalent type of cancer in the male population worldwide. The adoption of prostate imaging tests for the prevention, diagnosis, and treatment has grown. It is known that early detection increases the chances of an effective treatment, improving the prognosis of the disease. With this aim, computational tools have been proposed with the purpose of assisting the specialist in the interpretation of imaging tests, especially magnetic resonance imaging (MRI), providing the detection of lesions. The research of this doctoral work has as primary objective the proposition of an automatic methodology for the detection of lesions in the prostate. We divide the proposed methodology into two stages. In the first stage prostate segmentation is performed, for this purpose, the Ising model is used, models of probability, quality threshold and fusion of atlas labels. The second stage consists of the classification of abnormal tissues in the prostate. To this end, we extract lesion candidates through the Wolff algorithm, then texture characteristics are extracted using the Ising model, and finally, the vector machine is used to classify lesion or healthy tissue. The methodology was validated using three bases of T2-weighted MRI images. We used three bases for prostate segmentation. However, we used only one in prostate segmentation and lesion detection. The total number of images used in the validation of prostate segmentation was 108. The experimental results obtained here indicate an excellent perspective, considering that we obtained a mean Dice similarity coefficient (DSC) of 94.03 % in the step of. We validated The lesion detection stage on a set of 28 images with lesion markers. The methodology obtained a sensitivity of 95:92%, specificity of 93:89% and accuracy of 94:16%. These are promising since they were more significant than other methods compared.

DSpace software copyright © 2002-2025 LYRASIS

  • Política de Privacidade
  • Termos de Uso
  • Enviar uma Sugestão