Logo do repositório
Comunidades e Coleções
Tudo no DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "ARAUJO, Jose Denes Lima"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Nenhuma Miniatura disponível
    Item
    Diagnóstico de glaucoma a partir de imagens de fundo de olho utilizando índices de diversidade
    (Universidade Federal do Maranhão, 2018-02-26) ARAUJO, Jose Denes Lima; SILVA, Aristófanes Corrêa; 288745363-72; http://lattes.cnpq.br/2446301582459104; PAIVA, Anselmo Cardoso de; 375523843-87; http://lattes.cnpq.br/6446831084215512; PAIVA, Anselmo Cardoso de; 375523843-87; http://lattes.cnpq.br/6446831084215512; SILVA, Aristófanes Corrêa; 288745363-72; http://lattes.cnpq.br/2446301582459104; BRAZ JUNIOR, Geraldo; http://lattes.cnpq.br/8287861610873629; AIRES, Kelson Romulo Teixeira; http://lattes.cnpq.br/0065931835203045
    Glaucoma is one of the leading causes of blindness worldwide, and is usually caused by an increase in the intraocular pressure that damages the optic nerve and gradually causes vision loss. It is a disease that has no symptoms in the early stages and its early diagnosis can prevent the vision loss and blindness. Fundus images are used by experts to examine the optic disc in order to identify the changes caused by glaucoma. In addition, image processing and pattern recognition techniques are used for the development of computational tools in order to provide support in the process of analyzing these images. This work proposes a methodology for the glaucoma diagnosis from fundus images using diversity indexes as texture descriptors. After extraction of texture features, genetic algorithms are used to select the best set of features. Finally, the support vector machine is used to perform the classification. The proposed methodology revealed promising results for glaucoma diagnosis, reaching accuracy of 93.41%, sensitivity of 92.36% and specificity of 95.05%, as best results

DSpace software copyright © 2002-2025 LYRASIS

  • Política de Privacidade
  • Termos de Uso
  • Enviar uma Sugestão